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Exercice 1

a) Si la vitesse de la masse est constante, alors les forces normales donnent l’accélération centri-
pète et les forces tangentielles doivent être en équilibre. Par conséquent, la réaction normale
est

mg sin θ~ur − ~N = m~acp

et
~F1 = mg cos θ~uθ,

les vecteur polaires ~ur et ~uθ étant définis sur le schéma ci-dessus. Comme ‖~F‖ = ‖~F1‖, la

deuxième équation nous donne le module de la force ~F .

b) Utilisons le lien entre le déplacement du bout de la corde ~dr et la variation de l’abscisse

curviligne sur le disque : ‖ ~dr‖ = ds et l’angle correspondant dθ : ds = Rdθ

W =

∫
~F ~dr =

∫
Fdr =

∫
FRdθ = R

∫
Fdθ

= R

π/2∫
0

mg cos θdθ = mgR[sin(π/2)− sin(0)] = mgR

C’est le même résultat si nous calculons la différence d’énergie potentielle entre le bas et le
haut, et le résultat est indépendant du chemin emprunté.

1



Exercice 2
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7.5 Kinetic Energy and the Work–Kinetic 
Energy Theorem

We have investigated work and identified it as a mechanism for transferring energy
into a system. One of the possible outcomes of doing work on a system is that the sys-
tem changes its speed. In this section, we investigate this situation and introduce our
first type of energy that a system can possess, called kinetic energy.

Consider a system consisting of a single object. Figure 7.13 shows a block of mass m
moving through a displacement directed to the right under the action of a net force 

F, also directed to the right. We know from Newton’s second law that the block
moves with an acceleration a. If the block moves through a displacement !r " !x î "
(xf # xi) î , the work done by the net force F is

(7.13)

Using Newton’s second law, we can substitute for the magnitude of the net force
$F " ma, and then perform the following chain-rule manipulations on the integrand:

!W " "xf
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 ! Fdx

!

!
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∆ x

Figure 7.13 An object undergoing
a displacement !r " !x î and a
change in velocity under the action
of a constant net force F.!
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Figure 7.12 (Example 7.6) Determining the force constant k of
a spring. The elongation d is caused by the attached object,
which has a weight mg. Because the spring force balances the
gravitational force, it follows that k " mg/d.

Example 7.6 Measuring k for a Spring

A common technique used to measure the force constant of
a spring is demonstrated by the setup in Figure 7.12. The
spring is hung vertically, and an object of mass m is attached
to its lower end. Under the action of the “load” mg, the
spring stretches a distance d from its equilibrium position.

(A) If a spring is stretched 2.0 cm by a suspended object hav-
ing a mass of 0.55 kg, what is the force constant of the spring?

Solution Because the object (the system) is at rest, the up-
ward spring force balances the downward gravitational force
mg. In this case, we apply Hooke’s law to give #Fs # " kd " mg,
or

(B) How much work is done by the spring as it stretches
through this distance?

2.7 % 102 N/mk "
mg
d

"
(0.55 kg)(9.80 m/s2)

2.0 % 10#2 m
"

Solution Using Equation 7.11, 

What If? Suppose this measurement is made on an eleva-
tor with an upward vertical acceleration a. Will the unaware ex-
perimenter arrive at the same value of the spring constant?

Answer The force Fs in Figure 7.12 must be larger than mg
to produce an upward acceleration of the object. Because Fs
must increase in magnitude, and #Fs # " kd, the spring must
extend farther. The experimenter sees a larger extension for
the same hanging weight and therefore measures the spring
constant to be smaller than the value found in part (A) for
a " 0.

Newton’s second law applied to the hanging object gives

where k is the actual spring constant. Now, the experimenter
is unaware of the acceleration, so she claims that #Fs # "
k&d " mg where k& is the spring constant as measured by the
experimenter. Thus,

If the acceleration of the elevator is upward so that ay is posi-
tive, this result shows that the measured spring constant will
be smaller, consistent with our conceptual argument.

k& "
mg
d

"
mg

$ m(g ' ay)
k %

"
g

g ' ay
k

d "
m(g ' ay)

k

kd # mg " may

! Fy " # Fs # # mg " may

#5.4 % 10#2  J "

Ws 
" 0 # 1

2kd2 " #1
2(2.7 % 102 N/m)(2.0 % 10#2 m)2
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a) La masse suspendue se déplace vers le bas d’une quantité

x = x1 + x2 =
mg

k1

+
mg

k2

= mg

(
1

k1

+
1

k2

)
= 1.5kg · 9.81m/s2

(
1

1200N/m
+

1

1800N/m

)
= 2.04cm

b) Si les deux ressorts sont les mêmes, alors la distance d’extension totale est

x = x1 + x1 = mg

(
1

k1

+
1

k1

)
=

2 · 1.5kg · 9.81m/s2

1200N/m
= 2.45cm

c) Nous définissons la constante de rappel de deux ressorts en série :

k =
F

x
=

mg

mg(1/k1 + 1/k2)
=

(
1

k1

+
1

k2

)−1

La constante de ressort est donc le moyen harmonique des constantes de ressort individuelles.
La raison est que la force exercée sur les deux ressorts est identique, mais l’élongation totale
est la somme des élongations individuelles. Cette petite démonstration démontre l’impor-
tance des facteurs géométriques dans la détermination de cette constante.

Exercice 3

m
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Considérons le travail effectué par l’appareil de battage à partir du moment où il commence
à tomber jusqu’à ce qu’il s’immobilise après avoir enfoncé la poutre. Soit h = 5 m la distance
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sur laquelle le poids tombe librement, et d = 0.12 m la profondeur à laquelle la poutre est
enfoncée. La variation de l’énergie potentielle du mouton est donc ∆E = mg(h + d). Cette
énergie est dissipée par le frottement entre poutre et sol. Cette force de frottement agit pendant
la déplacement de la poutre, d. Le mouton est immobile au départ et aussi à la fin du processus,
l’énergie cinétique n’intervient donc pas dans le problème. Le bilan énergétique s’écrit

W = Fd = mg(h+ d)

⇒ F =
mg(h+ d)

d
= 878kN

Exercice 4

R

Mg

Mgsin(α) Mgcos(α)

Ffr

α

x

x′
yy′

Notons M la masse du cochon, L la longueur du plan incliné et ~g l’accélération de la pesanteur.

1. Sans frottement.
Faisons le bilan des forces sur le cochon incluant son poids et la force de réaction du plan
incliné :

M~g + ~R = M~a (1)

Projetons sur (~x′, ~y′) : {
Mg sin(α) = Max′
Mg cos(α) = R

→ ax′ = g sin(α)

Le temps nécessaire pour glisser jusqu’au pied du plan incliné est donné par :

t =
√

2L/ax′
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2. Avec frottement.
Dans ce cas on tient compte de la force de frottement dynamique :

M~g + ~R + ~Ffr = M~afr (2)

Projetons sur (~x′, ~y′) :Mg sin(α)− Ffr = Mafrx′
Mg cos(α) = R
Ffr = µR

→ afrx′ = g(sin(α)− µ cos(α))

Le temps nécessaire pour glisser jusqu’au bord :

tfr =

√
2L/afrx′

Donc :
tfr = 2t

µ =
3

4
tan(α) ' 0.53

Exercice 5

L’énergie est conservée au cours du mouvement du bloc sauf dans la région où les frottements
sont non nuls. Ces derniers effectuent un travail Wfriction = µFnd entrainant une perte d’énergie,
où Fn est la réaction normale du sol au poids du bloc, soit ‖Fn‖ = mg ; ainsi, l’énergie perdue
en raison des frottements est Wfriction = µmgd.
La conservation de l’énergie donne donc :

Einitiale −Wfriction = Efinale

Epotentielle de pesanteur −Wfriction = Epotentielle élastique

⇒ mgh− 1

2
kx2 − µmgd = 0

µ =
mgh− 1

2
kx2

mgd
=

10kg · 9.81m/s2 · 3m− 1
2
· 2250N/m · (0.3m)2

10kg · 9.81m/s2 · 6m
= 0.328
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